
Bots detection by Conformal Clustering

Giovanni Cherubin

Submitted for the Degree of Master of Science in

Machine Learning

Department of Computer Science
Royal Holloway University of London

Egham, Surrey TW20 0EX, UK

August 28, 2014

Declaration

This report has been prepared on the basis of my own work. Where other
published and unpublished source materials have been used, these have been
acknowledged.

Word Count:

Student Name:

Date of Submission:

Signature:

Abstract

Botnets, networks of infected machines controlled by an attacker, are a
widespread and dangerous threat over the Internet, since they are used to
perform most of the malicious activities such as distributed denial of service
attacks (DDoS), phishing or spamming. This project aims at detecting bot-
net infected machines (bots) by analysing high level network tra�c features
(NetFlow data). Specifically, our main goal in this scenario is to detect pre-
viously known botnets, and to cluster together similar kinds of them. We
approach the problem by using Conformal Clustering, a clustering method
based on Conformal Prediction, where significance level is used to trim the
hierarchy of clusters. This report introduces a few novel aspects to previous
research, such as a substantial and motivated increase of the feature set, a
feature evaluation algorithm to apply before clustering (SIM-DIFF), an al-
gorithm for periodicity detection by using Partial Autocorrelation Function
(PACF) instead of Discrete Fourier Transform (DFT), and the use of Pu-
rity as an accuracy criterion for Conformal Clustering. The use of NetFlow
informations makes our approach reliable even when the tra�c within the
botnet is encrypted. This report also documents the creation of a Python
package as an implementation of our work. This code has a structure which
can be easily used and extended for future research.

Contents

1 Introduction 1
1.1 Definition of the problem: what a botnet is 1
1.2 Network traces . 4
1.3 Approach . 5
1.4 Conventions . 7

1.4.1 Objects and examples 7
1.4.2 Botnets kinds, types, classes 7
1.4.3 Traces and dataset . 7
1.4.4 Network protocol notation 8
1.4.5 Source code listing . 8

2 Background research 9
2.1 General idea . 9
2.2 Features . 10
2.3 Dimensionality reduction . 11
2.4 Conformal Clustering . 12
2.5 Performance criteria . 12

3 Features selection 12
3.1 Challenges . 13
3.2 Selected features . 13

3.2.1 Periodicity . 13
3.2.2 Duration . 13
3.2.3 Bytes . 14
3.2.4 Protocol . 14
3.2.5 Ports . 14
3.2.6 IP addresses . 14
3.2.7 Features list and dataset creation 15

3.3 Periodicity detection using PACF 16
3.4 Features evaluation . 18

4 Preprocessing 21
4.1 Normalization . 21
4.2 Log-transformation . 21

4.2.1 Code . 23
4.3 Dimensionality reduction . 23

4.3.1 The reasons . 23
4.4 t-SNE . 24

2

4.5 Experiments, Results, Analysis 26

5 Conformal clustering 30
5.1 The algorithm . 30
5.2 Non-conformity measure . 32
5.3 Evaluation criteria . 33
5.4 Experiments and analysis of the results 33

6 System Evaluation 38
6.1 Evaluation Criteria . 38
6.2 Description of the experiment 39
6.3 Results and Analysis . 40

7 Code structure 45
7.1 Package code.scripts . 45
7.2 Package code.features . 47
7.3 Package code.preprocessing 47
7.4 Package code.conformal prediction 47
7.5 Package code.evaluation . 47

8 Future directions, Conclusions 48

References 51

A Installing and using the code 53

B Calling R from Python 55

C Code listings 56

D Professional Issues 57

3

Acknowledgement

I put many e↵orts and a lot of passion in this project. However, all this
work has been helped and made possible by a few people I would like to
thank here.

I would like to o↵er a special thanks to Prof. Alexander Gammerman
for his expert, wise and friendly supervision. He helped me a lot during this
project, and his passion for Machine Learning made me understand and
interest in many new topics.

A big gratitude goes to Dr. Ilia Nouretdinov, for patiently answering in
great detail all my questions, and for sharing with me his great knowledge
and previous experience on this subject. I sincerely appreciated all this.

I would also like to thank Prof. Lorenzo Cavallaro, Dr. Zhi Wang and
Dr. Davide Papini, for their great support on technical questions about the
Information Security aspects of this project. They are currently working on
this, and their knowledge was very important for approaching the topic.

I want to give a big thank to my good friend Mr. Lorenzo Grespan, his
help and encouragement have made me walk a lot in these years, and he
spent some time to discuss with me about this report.

First for importance, I would like to thank my parents, my brother and
Elisa. All the e↵orts I put in what I do would be useless without the support
and the love you give me every day.

1 Introduction

Network Intrusion Detection (NIDS1) is the use of Machine Learning tech-
niques to detect attacks to computer networks. The general naive idea is to
make a model of networks communications in “normal” or “under attack”
conditions. These models should be then used to detect and report possible
attack behaviours in the network. However, respect to other fields, the use
of Machine Learning for network attacks detection must be cautious. In
fact, as suggested by Sommer et al. in [15], it can be very hard to define
what is “normal behaviour” in network communications, since legitimate
tra�c can assume very di↵erent behaviours from a statistical point of view.
For this reason it is currently considered a good approach to create a model
of known attack scenarios and create a system to detect them, rather then
trying to spot anomalies within normal tra�c flow.

This project takes part of the wide area of NIDS. We aim at detecting
if a computer inside a network is part of a known botnet by looking at
high level network tra�c features. In order to achieve this, we proceed as
others [16] did, by clustering informations extracted from NetFlow data.
Our claim is that if we produce homogeneous clusters, where botnets of the
same kind are clustered together, we are also able to detect them in a real
world setting. As a consequence of this, it may be possible that our system
is able to detect some new botnet threat, but this is not guaranteed by the
assumption we work under. Section 6 presents and verifies our system on a
test set. The use of NetFlow data makes our system reliable also when the
data sent within the botnet is encrypted.

This section introduces the general structure of a botnet, the data we
were provided, and gives an overview of the system we suggest. This section
is also useful because it defines some conventions used in this report.

1.1 Definition of the problem: what a botnet is

We here describe from high level what are botnets, what kind of network
tra�c they produce, and where our observer sits when collecting data for
our system. A reader interested in a more precise description of our problem
can look at A survey of botnet technology and defenses from Bailey [2].

A botnet is a network of computers (bots) infected by a malware, which
are controlled by an attacker, the botmaster. The idea behind botnets is
that an attacker infects2 many computers on the Internet, installs on them

1
More properly Network Intrusion Detection System.

2
There are many di↵erent ways an attacker can obtain the control on a computer on

1

a software to control all of them at once, and uses them to carry on malicious
activities such as sending spam emails, performing Distributed Denials of
Service attacks (DDos) or stealing user informations. From a general point of
view the attacker, to control the botnet, uses a Command & Control server
(C&C). This server is able to send commands to the bots (e.g.: “tell me
what’s in your user’s browser cache” or “launch a denial of service attack to
$ip address”), and to retrieve informations from them. Figure 1 represents
at high level a botnet structure. Red elements represent the bots (infected
computers), while the black computer represents the C&C. Dashed lines
represent virtual communication circuits between C&C and the bots, passing
through the Internet (blue cloud). In real cases the number of bots can reach
many millions [17].

Figure 1: Botnet high level structure

Many kinds of botnets exist, and some of them can be characterized by
the use of di↵erent protocols. The bots we analyse in our data were: HTTP,

the Internet. We do not discuss them here because this is irrelevant for our detection

system.

2

IRC, and p2p based. The third category has a di↵erent structure from the
one shown in Figure 1, but this can be ignored for the purpose of this report.

We collect data from an observer sitting between an infected computer
(bot) and the Internet, as shown in Figure 2. This is done by running bots
software on a honeypot: a protected environment in which we can safely
execute malicious software. From our point of view, the honeypot can be
thought as an infected computer within a network we control. Honeypots
are not presented in this report, but a very good reference for this subject
is a book from Joshi and Sardana [9].

Figure 2: Where data is collected from

Our observer, the black circle on the virtual communication circuit be-
tween C&C and the honeypot, is able to see network tra�c going from the
bot to the C&C, and vice-versa from the C&C to the bot. This tra�c is
then analysed and network traces are produced. Follows a description of
how this data is composed. Di↵erent meaning of words kinds, types and
classes of botnets used in this section are defined in Section 1.4.2.

3

1.2 Network traces

Past studies [5, 7] have used deep packet inspection to detect botnet threats.
This means they were modelling the content of the exchanged network pack-
ets in order to perform their analysis. This approach is however quite slow,
and it is not reliable in case botnets encrypt their tra�c. For this reason
we base our study on high level data, which does not contain informations
about the content of the network packets exchanged.

The data we use was mainly collected from Anubis3 in 2009 in form of
NetFlow4, and it is composed of around 1.8 million flows. The use of Net-
Flow data, as suggested by Tegeler [16], makes the detection system reliable
even when the packets are encrypted. In this document we will refer to the
data presented in this section as network traces or simply data, di↵erently
from dataset, which is composed of the features extracted from network
traces (as presented in Section 3). We here illustrate through definitions in
a top-down fashion how this data was collected.

As we described before, the collection system was located between a
bot and the C&C server. This means that from a high level prospective
we observe all the network tra�c between the infected computer and the
Internet. We define a network trace to be all the network tra�c collected in
a certain amount of time (i.e. from the moment we start to the moment we
decide stop the collection system). A network trace can be logically divided
into network flows: since we work at 3rd layer of TCP/IP suite, TCP flows
can be defined as the TCP tra�c within a connection establishment and a
connection termination. Since UDP is a stateless protocol, we can define
a UDP network flow to be the tra�c within a certain window, or until no
communication happens for a certain timeout ⌧ .

From a network flow defined as above we can extract some high level
features, such as those defined in Table 1. It is quite clear that we can-
not directly use these features for prediction. This is further explained in
Section 3. For this reason a part of this project was spent in selecting and
extracting suitable features from this data.

We were given a set of network traces generated by di↵erent kinds of
botnets, as shown in Table 2. They are 9 kinds of botnets, and it makes sense
to divide them into three main groups, respect to their type: HTTP based,
IRC based and p2p based. In fact there are many similarities between them.
However, from our experiments we discovered that traces from mebroot are

3http://anubis.iseclab.org/
4http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/

index.html

4

1 timestamp at which day, hour, minutes, seconds the flow happened
2 duration duration of the flow
3 srcIP source IP address (2nd layer TCP/IP suite address)
4 srcPort source port (3rd layer TCP/IP suite address)
5 dstIP destination IP address
6 dstPort destination port
7 proto 3rd layer TCP/IP suite protoocol (‘TCP’ or ‘UDP’)
8 txPkts transmitted packets
9 rxPkts received packets
10 txBytes transmitted Bytes
11 rxBytes received Bytes
12 totPkts total packets = txPkts + rxPkts
13 totBytes total Bytes = txBytes + rxBytes
14 flags0 flags from the source
15 flags1 flags from the destination
16 assured ‘y’ if the flow was assured, ‘n’ otherwise
17 finished ‘y’ if the flow was finished, ‘n’ otherwise

Table 1: Features of a network flow

easily separable from all the other classes. We thus will consider from now
on to have 4 classes of botnets: HTTP based, IRC based, p2p based and
mebroot.

1.3 Approach

We give here a general overview of our approach. Because of the research
nature of this project, this system was progressively created by performing
di↵erent experiments. Section 2 shows the process we followed to create the
system, starting from existent literature, while here we present the structure
of our system.

The idea of this project is to cluster objects from our dataset by using
Conformal Clustering, and evaluate the clustering respect to their classes.
Our claim is that, if our system is able to group in di↵erent clusters the
di↵erent kinds of botnets, it will be also able to detect each of them in a
real world setting. Later in this report we will give an explanation of the
criteria we chose to test the performances of our system.

From a high level perspective, our system is composed of four logical

5

File name prefix Type of botnet
http_mebroot HTTP based
http_results (TORPIG) HTTP based
new_results HTTP based
irc_results IRC based
p2p_results_storm_e p2p based
p2p_results_storm_gateway p2p based
p2p_results_storm_u1 p2p based
p2p_results_storm_u2 p2p based
p2p_results_storm- p2p based

Table 2: File prefixes in our data, and respective botnet types

blocks:

• Features extraction

• Preprocessing

• Conformal Clustering

• Evaluation

The data we had, as suggested in the previous subsection, needs first to
be parsed and features must be extracted from it. In fact, network traces
cannot be used directly as informations for our model. From Features ex-
traction, which will be extensively analysed in Section 3, we obtain a dataset.
The section suggests many novel features respect previous research, and a
technique, which is new to the best of our knowledge, to extract period-
icity from timestamps of network traces by using Partial Autocorrelation
Function (PACF). In order to perform Conformal Prediction we need, for
motivations expressed in Section 4.3, our dataset to be represented in as few
dimensions as possible. We decide to use t-Distributed Stochastic Neighbor
Embedding (t-SNE) as a dimensionality reduction algorithm, which is able
to create a faithful two dimensional map of the high dimensional objects of
our dataset. In order to apply t-SNE it’s however necessary that the features
of the dataset are all consistently normalized. Preprocessing, presented in
Section 4, covers both normalization and t-SNE embedding. A preceding
log-transformation, lately motivated, is also part of Preprocessing. Section 5
presents Conformal Clustering method, by which we create predictions for

6

a grid of points, create clusters of them, and predict clusters for new ob-
jects. Evaluation is done on all the steps, in order to progressively check
them. In this context, a set of novel coe�cients called SIM-DIFF is pro-
posed in Section 3 to visualize the contribution of each feature in t-SNE for
our clustering problem. t-SNE is evaluated by using the natural parameter
Kullback-Leibler divergence. Conformal Clustering is evaluated by Average
P-Value, as e�ciency criterion, and Purity, as accuracy criterion. The use
of the latter is motivated and theoretically evaluated in Section 5. After
singularly analysing each component of the system we perform some con-
clusive experiment in Section 6 to evaluate the general method followed. In
this experiment we introduce the use of a train and test set for validating
our results.

1.4 Conventions

We briefly define here some conventions useful to read this document.

1.4.1 Objects and examples

In this report we will refer to example as the collection of an object and its
label together. Object is a generic dataset row. We may refer to an object
as a “feature vector”, to focus the attention on it as a collection of features.
Objects from the dataset are indicated by xi. Also 2-D entries from t-SNE
embedding are called objects, because they are unlabelled examples, and we
refer to them as zi.

1.4.2 Botnets kinds, types, classes

Kinds of botnets means all the 9 kinds as presented in the first column of
Table 2. Types of botnets refer to their protocol: irc, http and p2p based.
Classes or labels refer to the partition of kinds of botnets we made: irc, http,
p2p, mebroot.

1.4.3 Traces and dataset

It is important to make a distinction between what we call network traces
and dataset. The former, also called data, represent the data collected,
introduced in Section 1.2, the latter is the dataset we generate with feature
extraction in Section 3. We may say that network traces are raw data, and
dataset is composed of the meaningful informations extracted from them. In

7

general, where nothing specified, we will mention features as the attributes
of dataset.

1.4.4 Network protocol notation

When referring to a network protocol at n-th layer, we should specify which
notation we use. In fact, otherwise, it would be unclear if we are referring to
TCP/IP suite (4 layers) or to ISO/OSI model (7 layers), which can lead to
ambiguities. So far in this section we have always indicated the convention
used, by saying for example “TCP is a protocol at third layer of TCP/IP
suite”. However, since this form is quite redundant, from now on we will
implicitly refer to TCP/IP suite.

1.4.5 Source code listing

In order to execute commands the reader should first obtain the source code
as explained in the Appendix, and install all its dependencies. Source code
within this report is conveniently presented in three di↵erent ways, each of
which has a precise scope. We here give a summary of them.

Shell command In order to execute it properly, the reader should enter
the directory above code/ , and execute the listed command. By using this
notation we want to show how to execute a script from within the shell.
Example:

$ python -m code.scripts.create_dataset [...]

Python interactive session We use this form when we need to show a
little Python snippet of code, which can be executed from its interactive
environment. In order to get the same, type in a shell from the directory
above code/ :

$ python

Python 2.7.5 (default, Oct 27 2013, 22:30:06)

...

Type "help", "copyright", "credits" or "license" for

more information.

>>>

From now on the reader can type the commands after >>>. The >>>

prologue is in this report omitted, in order to facilitate copy-paste from pdf.

8

To exit this environment press: ctrl-D. In one case R interactive session
commands are presented in this report. For this circumstance the reader
will need to enter from a shell the command:

$ R

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"

Copyright (C) 2013 The R Foundation for Statistical

Computing

...

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

to enter the R interactive session. As before, > prologue will be omitted. As
before, to exit this environment press: ctrl-D. Code presented in interactive
session is usually a proof-of-concept for performing specific tasks (such as
plotting some results). For this reason it is not included in the code obtained
as explained in Appendix.

Repository Appendix will provide instructions to obtain and use the code
discussed and not listed here.

2 Background research

This section gives an outline of background research conducted for the dif-
ferent parts of the system. Because of this, it also gives an introduction to
how the project developed toward the system creation.

2.1 General idea

The main idea of this project was to experiment with the problem of botnets
detection by using the approach which Smith et al. [14] applied to anomaly
detection of trajectories in the maritime domain. By botnets detection, as
previously explained, we here intend to label as “malicious” the network
tra�c produced by an infected computer which is part of a botnet. In re-
spect to our problem Smith et al. had some di↵erent aspects: i) maritime
trajectories, as explained further later, can have arbitrary length, and this

9

is a problem when creating a model, and ii) in their context it made sense
to produce positive examples (i.e.: artificial trajectories to be labelled as
anomalies). Their approach to the first problem was using a dimensionality
reduction algorithm, specifically t-SNE (t-Distributed Stochastic Neighbour
Embedding), which is able to faithfully preserve the distances between ob-
jects in high dimensional data when embedded into lower dimensional data.
The algorithm was in their case fed with the Hausdor↵ distance matrix, as
Laxhammar et al. suggested before [10]. t-SNE algorithm is presented by
Van Der Maaten in [19], and will be further discussed in Section 4.3. Our
system will be using t-SNE, but for other motivations, which allows us to
use Euclidean distance. The second di↵erence raises from reasons explained
in the previous section and in Sommer [15]: in our case we couldn’t produce
any reasonable “normal tra�c”. This is an important constraint of our prob-
lem, and because of it we focused on distinguishing between di↵erent kinds
of botnet. Our claim is that if we are able to produce clusters keeping sepa-
rate di↵erent botnets threats, then we are also able to detect them in a real
world setting in presence of normal tra�c. In terms of this assumption our
approach is very similar to the one used by Tegeler et al. for BotFinder [16],
which aims at clustering separately di↵erent kinds of botnets. Within this
section we will outline similarities and di↵erences respect to their approach.

2.2 Features

Previous studies on botnets detection [5, 7] used deep packet inspection: they
modelled the content of exchanged packets within the botnet to perform
their predictions. However, since this approach is not reliable for botnets
encrypting packets, we make use of high level data (NetFlow), as suggested
by Tegeler et al. [16], and extract from them features to create a dataset.
This makes our approach working with the frequent case of encrypted tra�c
in botnets communications. Furthermore, this aspect makes our approach
privacy aware, since no user data is read, and IP addresses can be obfuscated
before analysis. We also noticed that detection systems from Tegeler et al.
[16] and Gu et al. [6] only used a few of the available informations, which
we show to be useful in Section 4.2. Respect to their approach we introduce
the use of: percentage of TCP or UDP protocol use, variance on di↵erent
informations, a set of features considering the percentage use of destination
port numbers in standardized partition, and a set of features taking care
of the source IP address (see Section 3). In Section 3.3 we suggest a novel
-to the best of our knowledge- algorithm for periodicity detection. This
algorithm is based on the use of Partial Autocorrelation Function (PACF),

10

which has shown to work well even under certain degrees of noise. From
this we make use of the derived new feature, frequency, which we believe
to cover informations of BotFinder ’s average time between communications
and period. In fact, since our algorithm is able to detect whether periodicity
exists, we do not consider the average time between communications as a
feature, because in presence of “normal tra�c” this may be highly dependent
to the context we work in. Section 3 extensively explains how we perform
extraction of our features. The total number of features of our created
dataset is 18.

2.3 Dimensionality reduction

Smith et al. [14] applied a dimensionality reduction algorithm to their sys-
tem mainly because they had 4D features, where D could have been dif-
ferent between dataset objects. For this reason, they also used Hausdor↵
distance matrix, which is able to compute distances between sets. As ex-
plained before, we did not have the same problem. However, we faced the
high dimensionality as a problem when using Conformal Clustering. In
fact, for applying Conformal Clustering to our data we needed to create a
p-dimensional grid of p-values, where p is the number of the features. How-
ever this meant that we needed to compute `

p p-values, where ` = 18 is
the length of one grid side, which would be computationally infeasible for
large resolution. Furthermore, clustering in high dimensions may lead to
have objects too separated, and thus to produce a large number of clusters.
This will be explained extensively in Section 4.3 and Section 5. We decided
to apply t-SNE as Smith et al. did, because of its property of keeping the
relative distances of objects close between high and low dimensional data.
The choice of t-SNE algorithm parameters will be explained in Section 4.3.
A good source to understand how to evaluate it was the home page of t-SNE
[18] , were a FAQ section suggests to run the algorithm for many PRNG
seeds (t-SNE is a non deterministic algorithm) and with di↵erent parame-
ters, and to look for the one that produced the smallest Kullback-Leibler
divergence (KL divergence). In fact, t-SNE works by progressively trying
to reduce KL divergence, which represents a divergence between the simi-
larities (in form of probability) of objects in high dimension, and the ones
of the objects in low dimension. Our choice was, as will be shown later, to
test di↵erent parameter settings within a suggested range, and to look for
the best KL divergence.

11

2.4 Conformal Clustering

Conformal Clustering makes use of Conformal Prediction, introduced by
Vovk et al. [20], to create sets of predictions. The idea of distribution free
predictions and Conformal Clustering appears in Lei [12, 11]. Laxhammar et
al. [10] and Smith et al. [14] use p-values grid to create clusters of objects.
We follow their approach to produce clusters, and predict labels for new
objects by looking at neighbouring clusters (cluster containing one object
which has distance 1 or less from the new object). We use smoothed confor-
mal predictor to compute p-values, as it was recommended in Gammerman
et al. [4] for exact validity.

2.5 Performance criteria

Smith et al. [14], who both used t-SNE and Conformal Clustering on a
dataset, introduced Average P-Value (APV) as an e�ciency criterion and
used partial Area Under Curve (p-AUC) for validity. However, since we
could not use any “normal tra�c” labelled data, we had to replace the
validity criterion with a cluster-related one. For this aspect we referred
to Introduction to information retrieval book from Manning, Raghavan and
Schtze [13] to find a clustering based evaluation criterion. Here, they present
four di↵erent kinds of clustering evaluation. The first one, Purity, is a simple
measure of how many classes appear in the same cluster. The others, such
as Rand index and F measure, are useful to make comparisons, for example,
respect to the number of clusters, or to False Positives or False Negatives
considerations. In Conformal Clustering we are not interested in how many
clusters we generate, since some similar examples may be far but still clus-
tered with other examples of the same class. For this requirement, we chose
to use Purity, which we may refer to as accuracy criterion. Performance
criteria will be further discussed later in Section 5.

3 Features selection

This section presents the work done to select and extract the features from
the network traces presented in Section 1. As explained in Section 1.4, we
will refer to the network traces we were given as data. We here remind
that every network trace is composed by many network flows, which have
the attributes described in Table 1. Every row in our dataset will be then
derived from a network trace (e.g.: one feature of the row can be the average
transmitted bytes for all flows in the network trace). We here also introduce

12

a visualization and evaluation algorithm to observe the specific contribution
of each feature for our successive dimensionality reduction and clustering.
The results of this evaluation are then shown and analysed.

3.1 Challenges

Translating security related informations to consistent data for Machine
Learning analysis can be quite di�cult. For example, averaging a port num-
ber as a feature would make no sense at all: port numbers are qualitative
objects, and they can have a particular meaning respect to the standards
defined by Internet Assigned Numbers Authority (IANA)5. From the other
hand, it may be meaningless to use them as proper qualitative features,
because they can be almost arbitrarily changed, regardless to their stan-
dardized meaning. For this reason some time was spent on understanding
which feature could be used, and how to make use of our data.

3.2 Selected features

Six kinds of features were extracted.

3.2.1 Periodicity

In some kinds of botnets, bots communicate periodically with the C&C
server. For this reason it seemed a good idea to use communication period,
as Tegeler et al. [16] did, as a feature. The algorithm to extract this feature
is presented afterwards. This feature was extracted by using timestamps of
network flows in a trace.

However, since not all the botnets communicate periodically, in some
cases the feature period T , measured in seconds, would need to be1. Now,
as this would have been di�cult to handle for our learning algorithms, we
chose to use frequency [Hz] as a feature. This feature can be set to:

frequency =

(
0, if T =1(no period)

1/T, otherwise
, (3.1)

for T > 0. This quantity can be easily handled by learning algorithms.

3.2.2 Duration

Sample mean and variance of network flows duration (Table 1) were used as
features.

5https://www.iana.org.

13

Range Denomination
0, 1023 System ports
1024, 49151 User ports
49152, 65535 Dynamic and/or private ports

Table 3: IANA tripartition of port numbers

3.2.3 Bytes

Sample mean and variance were used as features from received, transmitted
and total (received+transmitted) Bytes of network flows.

3.2.4 Protocol

In every network flow there is a flag corresponding to the 3rd layer protocol:
“TCP”, “UDP”. For our dataset we used as features the percentages of use
of each of the two protocols in a network trace.

3.2.5 Ports

The source port number is selected randomly by the Operating System.
For this reason, source port numbers usually do not contain any relevant
information for us. However, destination port is meaningful for a flow:
since many port are conventionally associated to a service, they can be a
characteristic of a botnet and describe its protocol.

As explained before, averaging port values would not make much sense.
A solution would be to create P features, each of them corresponding to
a port number, describing the percentage of use of that port. However,
TCP/IP port numbers have cardinality P = 65536, which would mean
adding 65536 new features to our dataset. This is not feasible.

Our approach is based on a standardized tripartition of port numbers
assigned by IANA 6. The partition is as in Table 3. We consider as features
the percentages of usage in a network trace of ports in each partition.

3.2.6 IP addresses

IP addresses cannot be used as numbers. Furthermore, even by using them
as qualitative attributes, it may be di�cult to deal with them.

6https://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.txt.

14

Our idea is to use them to produce more features, from the features al-
ready presented here. In Section 1 we said that our data contains network
flows coming from the bot to the C&C, and from the C&C to the bot. How-
ever, in our network traces, features such as srcPort or txBytes are always
of the entity who initiated the flow, and features like dstPort or rxBytes
are of the entity who responded. We decided to introduce a new set of fea-
tures. After computing the features as before, we swap where needed the
elements in our network traces, so that “src*” or “tx*” always correspond to
the bot’s IP address, “dst*” or “rx*” corresponds to the entity it is commu-
nicating with. From these newly created traces we estract mean and vari-
ance of received and transmitted bytes, which we call: rxBytes mean dir,
txBytes mean dir, rxBytes var dir and txBytes var dir. Here the
su�x “ dir” shows we calculated the features after inverting the direction.

3.2.7 Features list and dataset creation

Follows a list of the 18 features above explained:
duration mean, duration var, totBytes mean, totBytes var, fre-
quency, TCP usage,UDP usage,wkn ports usage, reg ports usage,
dyn ports usage, txBytes mean, txBytes var, rxBytes mean,
rxBytes var, txBytes mean dir, txBytes var dir, rxBytes mean dir,
rxBytes var dir.

The dataset we will use through this report can be created by typing,
from a command line in the directory above code/ :

python -m code.scripts.create_dataset --src [traces] --dst

[dataset] --blacklist [blacklist]

where traces is the directory containing our network traces
(data/data-traces/), dst is the destination su�x which can be set to
data/dataset/dataset , and blacklist is an optional blacklist telling which
files to skip from data/data-traces/. In our case blacklist must be
code/scripts/dataset blacklist.txt. This script will produce three
files: dataset.csv (the dataset), dataset-labels.txt (list of labels) and dataset-
ids.txt (list labels translated to numbers). This script tries to automatically
detect the IP address of the bot of network traces. We assume the IP ad-
dress of the bot: i) is private, ii) appears in every row of a network trace.
However, it may happen that the scripts is not able to automatically detect
it. In this cases, it will prompt something like:

ipBot wasn’t found, enter it manually

Possible IPs: [(’0.0.0.0’, ’255.255.255.255’),

15

(’192.168.183.160’, ’116.50.0.2’), (’192.168.183.160’,

’83.26.4.2’), (’192.168.183.160’, ’87.249.21.2’),

(’192.168.183.160’, ’125.244.24.2’), (’192.168.183.160’,

’24.117.41.2’), (’192.168.183.160’, ’84.244.69.2’),

(’192.168.183.160’, ’65.8.122.2’), (’192.168.183.160’,

’70.158.171.2’), (’192.168.183.160’, ’192.168.183.2’)]

Enter the IP:

If this appears, the user will need to insert the address more likely to
be the bot’s address, respect to the previous criteria. In this case:
192.168.183.160. This issue can be solved in future versions of the
code.

Please note that before executing these commands, the user should check
to have satisfied all the software requirements, as in Appendix.

3.3 Periodicity detection using PACF

We here present the problem of periodicity detection in our dataset. In our
context, periodicity detection means understanding if network flows in our
trace happen periodically, and in that case what its period T is. From the
timestamps of the flows we create a time series y of zeros and ones where:

y(t) =

(
1, if flow occurred at time t

0, if no flow occurred at time t

. (3.2)

Detecting periodicity in such a time series is a known problem in litera-
ture. A common solution is to compute the Discrete Fast Fourier Transform
(FFT), take its module, and count the peaks of the resulting function. It
turns out that the number of peaks of a so created function is the period
of the series. However, this approach needs to be able to count FFT peaks,
which can be di�cult under noisy conditions, where the height of the peaks
may also vary.

We suggest a method to detect periodicity which has shown to work
well under noisy conditions, and which is pretty simple to apply. Our ex-
periments also showed our method works well for other problems, such as
detection of multiple periodicities, but this second task is not presented in
this report because not properly related to our discussion.

As a periodicity detection method we suggest the use of Partial Autocor-
relation Function (PACF) on our series y and a certain threshold condition
on the function. We observed that applying PACF to a series usually shows

16

an high peak corresponding to the period. For example, the following R
code:

N <- 50000

period = 23

t <- 1:N

y <- rep(0, N)

y[t%%period == 0] <- 1

pacf(y, 250)

produces as in Figure 3 a peak at lag 23, which is our period.

Figure 3: PACF on time series with periodicity 23

This is also true under noisy conditions. To test this we performed an ex-
periment using di↵erent degrees of noise ⌫ 2 {0, 0.01, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4}
and plotting the results. Code in code/scripts/test-pacf-artificial.R

shows how to obtain the same. In this experiment we assumed to know
one periodicity existed. Our prediction rule was to take the PACF lag with
the highest value as a period. Follow the detection results produced by this
experiment:

17

Noise Detection (%)
0 100.0
0.01 100.0
0.04 100.0
0.05 100.0
0.1 98.0
0.2 79.6
0.3 67.3
0.4 52.0

So far we have worked on artificial data, where we knew some periodicity
existed. When we do not know if there exists any period in our series, the
problem gets more complicated, and it can become di�cult to understand
if the height of some peaks is relevant. Many criteria were explored to
detect the peak under these conditions, and further studies may focus on
this aspect. However, since this was not a particularly delicate aspect of
the project, it looked adequate the use of an empirical rule for creating our
dataset. We first plotted all the PACFs corresponding to time series created
as in Equation 3.2 from network traces timestamps. We then looked for a
threshold which wasn’t infected by noise by visual inspection, and chose this
threshold to be # = 0.7. Our method showed that irc based botnets used
to communicate with their C&C periodically with a period of 21 seconds.
For creating the dataset, the period detection rule was therefore to compute
PACF on a time series y, look for the highest peak, and if it was greater
than # select its lag as the period. Otherwise, no period would have resulted
for the series.

As explained before in this section, using period directly as a feature
would be di�cult when no periodicity is detected. For this reason we used
frequency as in Equation 3.1, which is equal to 1/T when period T > 0
and 0 when no period is detected (T =1).

3.4 Features evaluation

During this project it seemed important to understand the contribution of
dataset features. This may be helpful for future works to only focus on the
most important features in order to improve the performances.

As will be explained in the next chapters, it was necessary to use an
euclidean distance based dimensionality reduction algorithm on the dataset
before using conformal clustering on it. The idea of the algorithm we here
present to evaluate features is to show how much each feature in the dataset

18

contributes to:

• make object from the same class to be far

• make objects from di↵erent classes to be far

We specifically define two coe�cient vectors: SIM, DIFF. Their length,
d, is the number of the features in a dataset row.

SIM[i] represents an approximation of how much the i-th feature con-
tributes to make objects from the same class to be far. In our definition
SIM[i] is the average contribution of i-th feature to the distance of two
objects with the same label. In general we want SIM to be as small as
possible. It is calculated as in Algorithm 1.

Data: feature vectors x1, x2, ..., xn, labels y1, y2, ..., yn
Result: SIM coe�cients
SIM =[]
X = {x1, ..., xn}

uY = entries in Y without repetition
for i = 1 to d do

Xi = i-th column of X
SIM [i] = 0
for class in elements of uY do

fromclass = Xi[where Y == class]
pdist = pairwise distances(fromclass)
SIM [i] = SIM [i]+ (sum(pdist) / length(pdist))

end
SIM [i] = SIM [i]/length(uY)

end
Algorithm 1: Calculation of SIM coe�cients

DIFF[i] represents and approximation of how much the i-th feature con-
tributes to make objects from di↵erent classes to be far each others. Two
objects from di↵erent classes have in average distance DIFF [i] respect to
the i-th feature. In general we want this coe�cient to as big as possible.
Follows the algorithm to calculate DIFF:

19

Data: feature vectors x1, x2, ..., xn, labels y1, y2, ..., yn
Result: DIFF coe�cients
DIFF =[]
X = {x1, ..., xn}

uY = unique entries in Y : our classes
for i in 1 to d do

Xi = i-th column of X
DIFF [i] = 0
for class in elements of uY do

fromclass = Xi[where Y == class]
notfclass = Xi[where Y ! = class]
pdist = respective distances between elements in fromclass

and elements in notfclass

DIFF [i] = DIFF [i]+ (sum(pdist) / length(pdist))
end
DIFF [i] = DIFF [i]/length(uY)

end
Algorithm 2: Calculation of SIM coe�cients

From these definitions we want SIM [i] ⌧ DIFF [i], so that i-th feature
keeps distant similar examples (i.e.: examples with the same label) less than
it keeps distant dissimilar examples (i.e.: examples with di↵erent labels).
On the other hand, if SIM [i] >= DIFF [i] we understand that i-th feature
is not relevant or it even makes our clustering worse. We performed our
experiments with Euclidean distance as a distance measure. However, other
distance measures can be tested in the future.

We represented these two coe�cients with barplots, where green bars
are SIM coe�cients, red bars are DIFF coe�cients. As explained before,
we want green bars to be as small as possible, or at least smaller than
the neighbour red bar. All the features must be normalized before cal-
culating the coe�cients, so we can compare the contributions of the fea-
tures, and potentially look for the most important of them. The code
for calculating sim di↵ was implemented in the function sim di↵() in
code.evaluate.eval features. SIM-DIFF results are shown in next sec-
tion in Figure 4, when comparing di↵erent preprocessing. Next section also
shows the code to obtain the same.

SIM-DIFF coe�cients helped in selecting the best preprocessing for our
dataset. In this setting, thanks to these coe�cients, we were able to choose
if and when to apply logarithm transformation on some of our features.
Thanks to these coe�cients we also spotted a bug in the dataset creation

20

code, which formerly was producing a few irrelevant features. In general
we believe that SIM-DIFF, thanks to their intuitive representation, can be
useful to have an idea regarding how the dataset is composed and how some
operations influence a dataset. Graphical examples of this will be presented
in the next section.

4 Preprocessing

This section presents the processing phase of our dataset before clustering.
Preprocessing included, in order, logarithm transformation of some features,
normalization in [0,1] and dimensionality reduction by using t-SNE. We
express in this section the motivations of our choices, we give a brief overview
of t-SNE algorithm, and we make some evaluation of t-SNE embedding on
our dataset. Note that the implemented code for log-transformation and
normalization is separated from the code for t-SNE. For the latter in fact
we used the implementation from the Open Source package scikit-learn,
as explained in the Appendix.

4.1 Normalization

Normalization was needed for both features evaluation, as seen in Section 3,
and t-SNE embedding. The only requirement for them was the normaliza-
tion to be consistent for all the features. We applied a normalization in [0,1],
before dimensionality reduction, as follows:

x01 =
x�min(x)

max(x)�min(x)
, (4.1)

where x is the vector to normalize.

4.2 Log-transformation

From past studies it looked important to take the logarithm of bytes-related
features, such as: txBytes, rxBytes, totBytes. This because these features
have a large range, and log-transformation can improve their contribution.

We chose to apply log-transformation directly on network traces features:
txBytes, rxBytes, totBytes. This is automatically done by create dataset
script, which can be run as shown in Section 3. Before choosing whether
to apply or not this transformation, we however performed an experiment
using SIM-DIFF, as introduced in Section 3.4, on a dataset created without

21

Figure 4: SIM-DIFF coe�cients when no log-transformation is applied
(above) and when log-transformation is applied on network traces, before
creating the dataset (below)

log-transformation and one with log-transformation. The results of the two
experiments are in Figure 4.

22

In the figures, we want to consider the bytes-related features:
{V 3, V 4, V 11, V 12, ..., V 18}. The improvements obtained by introduc-
ing logarithm transformation are evident: between the two figures we see
the gaps between SIM and DIFF increasing, and some features which used
to be irrelevant (i.e. SIM ' DIFF), such as V 4, V 14 and V 18, gained
importance. In this case the graphical results were evident. If in some cases
they are not so evident, we suggest to consider the two di↵erence vectors:
DIFF � SIM of the first dataset, DIFF � SIM of the second dataset,
and look for the biggest values for each feature.

Logarithm transformation was applied to network traces before creating
dataset. After this, features were normalized in [0,1], and t-SNE was run on
them. Further studies may try to apply log-transformation on the dataset
itself, over the features derived from bytes-related network traces attributes.

4.2.1 Code

In order to preprocess the dataset created in Section 3, the reader should
run, from the directory above code/ :

python -m code.scripts.preprocess_dataset --dataset [dataset

] --out [dataset-preproc]

where dataset should be the dataset created before, dataset.csv , and out
should be the output file, such as data/dataset/dataset-preproc.csv.

To run the features evaluation over the created dataset, as shown in the
previous subsection, the reader should run:

python -m code.scripts.evaluate_features --dataset [preprocessed

dataset] --labels [labels]

where dataset should be the preprocessed dataset just created,
data/dataset/dataset-preproc.csv , and labels should be the labels file,
data/dataset/dataset-labels.txt . This will output the SIM-DIFF
coe�cients, and show a barplot visualizing them.

4.3 Dimensionality reduction

4.3.1 The reasons

In Conformal Clustering we are given a set of unlabelled objects Z and we
want to produce clusters of them, by using the significance level " to regulate
the hierarchical depth of the clustering. A method to do this is to create a
grid of points, calculate p-values for each of them (we can call this “p-values
grid”), and cluster those points for which p-values are greater than ". For
example, if we are working on a 2-dimensional space we construct a grid of

23

` points in the (min, max) for both the dimension respect to our training
set Z, calculate p-value for each new observation (point in the grid) respect
to objects in Z and trim the results by using ". The parameter ` regulates
the resolution of our grid. This topic will be explained more in depth in
Section 5.

However, this means that in 3-dimensions we would need to create a 3-D
grid, and so on. Given that we split each dimension in ` points, having
p features we would need to compute `

p p-values to create the p-values
grid. Now, this rapidly becomes computationally infeasible when we want
to increase the resolution. For this reason, having selected 18 features for
our dataset, we opted for a dimensionality reduction algorithm, in order to
reduce p to 2.

A second important reason for using dimensionality reduction is that
clustering on high dimensional data tends to keep objects too separate, thus
causing the algorithm to generate too many clusters.

4.4 t-SNE

We chose to use as a dimensionality reduction algorithm t-Distributed
Stochastic Neighbor Embedding (t-SNE), introduced by van der Maaten et
al. in [19], because of its capacity of keeping similar objects in high dimen-
sional data close in the low dimensional map. We here give an overview of
this algorithm, by mainly referring to van der Maaten paper [19].

t-SNE is a visualization technique which is able to faithfully transform
high dimensional data into a two or three dimensional map. It is mainly
based on a previous study from Hinton et al. Stochastic Neighbour Embed-
ding (SNE) [8], from which it takes the general idea and of which corrects
a few weak aspects. The goal of SNE is keeping close in the low dimen-
sional map objects which are similar in high dimensional data, and far in
low dimensions dissimilar objects in high dimensions. This algorithm could
run by simply knowing the pairwise probability indicating how much high
dimensional objects are similar. However, in a general context, we find it
useful to empirically determine these probabilities from our data. We de-
fine pi|j to be the probability that high dimensional object xi chooses xj

as neighbour. This probability is computed in SNE assuming a Gaussian
distribution centered in xi with a certain variance �i. This is expressed in
the form:

pi|j =
exp(�||xi � xj ||

2
/2�2

i)P
k 6=i exp(�||xi � xk||

2
/2�2

i)
, if j 6= i, (4.2)

and pi|i = 0.

24

Similarly, we then define qi|j to be the analogous probability for low
dimensional objects yi yj . Its expression is therefore:

qi|j =
exp(�||yi � yj ||

2
/2�2

i)P
k 6=i exp(�||yi � yk||

2
/2�2

i)
, if j 6= i, (4.3)

and qi|i = 0.
The basic idea behind SNE is to progressively decrease the mismatch

between pi|j in high dimensional data and qi|j in low dimensional data. The
measure suggested to describe this discrepancy is Kullback-Leibler diver-
gence. Kullback-Leibler divergence KL(P ||Q) is a measure indicating how
much of information is lost by approximating distribution P with Q. In case
P and Q are discrete distributions, it is defined as:

KL(P ||Q) =
X

i

P (i) log

✓
P (i)

Q(i)

◆
. (4.4)

SNE minimizes progressively the divergence by using gradient descent
over all the data points. In order to determine the variances �i SNE uses
perplexity, which is a parameter set by the user. Perplexity is intuitively
the measure of e↵ective number of neighbours.

t-SNE modifies SNE, making it a faithful and computationally e�cient
algorithm. t-SNE makes use of symmetric SNE, proposed by Cook et al.
[3], which has a cost function C of this form:

C = KL(P ||Q) =
X

i

X

j

pi|j log
pi|j
qi|j

, (4.5)

where pi|j = pj|i and qi|j = qj|i
An issue in SNE was the one van der Maaten et al. call “crowding

problem”. The crowding problem usually presents when trying to model
high dimensional data into a lower dimensional space. In the conversion
it can result that moderately far objects in high dimension do not have
large enough space to be accommodated in low dimensions, respect to near
objects. For this reason t-SNE uses a Gaussian distribution for converting
distances from high dimension, while it uses Student t-distribution with
one degree of freedom to convert distances in low dimension. The second
distribution has the property of being heavy-tailed, thus allowing to model
moderate distances in the high-dimensional space into larger distances in
low dimension. The probabilities in low dimension are thus defined as:

qi|j =
(1 + ||yi � yj ||

2)�1

P
k 6=i(1 + ||yi � yk||

2)�1
(4.6)

25

t-SNE has proven to work well in creating very informative 2-D or 3-
D representations showing correlations between objects in high dimensions.
We choose to use this method, as Smith et al. did [14], before our cluster-
ing. Our experiments on the general system, as will be shown in Section 6,
indicate that our approach is valid.

4.5 Experiments, Results, Analysis

t-SNE creators van der Maaten and Hinton suggest in [18] to choose the
best result by visual inspection. However this can be very subjective in
our case, where visualization is not the main goal. In the same document,
however, they recommend that a good approach is to look at the Kullback-
Leibler divergence, which as shown before can give us an idea of how data in
low dimensions is faithful to high dimensional data. Furthermore, since the
initialization of the algorithm can be random, they also suggest to run the
algorithm multiple times (i.e.: for multiple PRNG seeds) and then choose
for the best one.

We conducted two experiments on t-SNE. In the first one we are inter-
ested in how KL divergence relates with di↵erent values of perplexity. The
second experiment looks for the smallest KL divergence by testing many
values for parameters such as perplexity, learning rate and metric. We here
illustrate these experiments and analyse the results.

In the first experiment we choose to only trim perplexity parameter.
Van der Maaten et al. suggest in [18] that perplexity should have some
value between 5 and 50. Perplexity represents our smooth idea of the num-
ber of neighbours an object may have. All the other parameters are kept
to the default of the software we are using: (metric=’euclidean’, learn-
ing rate=100). A second experiment will consider also these parameters.

In order to run this experiment, the user should launch, from the direc-
tory above code/ :

python -m code.scripts.evaluate_tsne --dataset [preprocessed

dataset]

where dataset must be the preprocessed dataset, as
data/dataset/dataset-preproc.csv.

This script will calculate t-SNE for perplexity in range {5, 6, .., 50}, and
finally produce a plot of the results. Figure 5 shows this result. From the
plot we can clearly notice a trend of KL divergence toward 0 when perplexity
augments. Since KL divergence indicates how much our 2-D representation
is unfaithful to high dimensional data, we are induced to think that moving
perplexity beyond 50 will improve the system performances. Section 6 will

26

Figure 5: t-SNE: perplexity versus Kullbak-Leibler divergence

take into account this hypothesis, by considering other aspects of our system.
Our second experiment was focused on obtaining the best result by test-

ing di↵erent values for t-SNE parameters on the dataset. In order to get
the best results, we tested for each unique set of parameters 20 di↵erent
initializations, by feeding the PRNG seed with numbers in {0, 1, .., 19}. The
parameters were tested in these ranges of values:
perplexity in {5, 6, .., 50}
learning rate in {50, 100}
metric in {‘euclidean’, ‘cityblock’, ‘seuclidean’, ‘sqeuclidean’, ‘cosine’, ‘cor-
relation’, ‘chebyshev’, ‘mahalanobis’}7.

The script created for this experiment calculates t-SNE final KL diver-
gence for all these values, for every seed, and it only prompts the “best
result so far”. The output of the script at the end of the experiment was as
follows:

[i] perplexity: 49/50

7
These distances are all defined in http://docs.scipy.org/doc/scipy/reference/

generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist

from which we used pdist function.

27

New best: +0.0630964384 {’perplexity’: 49, ’learningr’: 50,

’metric’: ’euclidean’, ’seed’: 15}

[i] perplexity: 50/50

New best: +0.0613313583 {’perplexity’: 50, ’learningr’: 50,

’metric’: ’euclidean’, ’seed’: 2}

New best: +0.0611046107 {’perplexity’: 50, ’learningr’:

100, ’metric’: ’euclidean’, ’seed’: 2}

Overall best: +0.0611046107 {’perplexity’: 50, ’learningr’:

100, ’metric’: ’euclidean’, ’seed’: 2}

which essentially communicates the overall best set of parameters
was (perplexity=50, metric=‘euclidean’, learning rate=100, seed=2),
where KL divergence is 0.061105.

Although we see that Euclidean distance performed best, we also notice
by the results of this experiment that metrics as ‘seuclidean’ and ‘cityblock’
had a good importance. In this case, ‘seuclidean’ stands for Standardized
Euclidean distance, which is defined as:

d(u, v) =

sX

i

(ui � vi)2/�i, (4.7)

were �i is the variance computed over ui and vi, and ‘cityblock’ is the City
Block or Manhattan distance:

d(u, v) =
X

i

|ui � vi|. (4.8)

In order to reproduce the same, the reader can run, from the main di-
rectory:

python -m code.scripts.best_tsne --dataset [preprocessed

dataset]

After this we may want to plot the best result. We can do this by running
the following code in a Python interactive session from the main directory:

import numpy as np

import pylab as pl

import code.scripts.load as load

from sklearn.manifold import TSNE

from scipy.spatial.distance import pdist, squareform

28

Settings

DATASET = ’data/dataset/dataset-preproc.csv’

LABELS = ’data/dataset/dataset-ids.txt’

Settings after the experiment

METRIC = ’euclidean’

PERPLEXITY = 50

LEARNINGR = 100

SEED = 2

Load dataset

X = load.load_dataset(DATASET)

Y = load.load_ids(LABELS)

Compute TSNE

dist = squareform(pdist(X, METRIC))

t = TSNE(perplexity=PERPLEXITY, learning_rate=LEARNINGR,

random_state=SEED, metric=’precomputed’)

Z = t.fit_transform(dist)

Plot results

pl.scatter(Z[:,0], Z[:,1], c=Y, marker=’o’, cmap=’prism’)

pl.show()

This code produces a plot as in Figure 6. Note that in this representation
every kind of botnet has its own color. We did not label here these classes
because, as explained in Section 1, we will not consider each of them as
a single class in our classification problem. We can although observe that
objects with the same color (i.e.: from the same botnet kind) are pretty
close each others, which suggests our clustering task will be easier. Later on
in this report the objects on the figure will be labelled respect to their class.

29

Figure 6: t-SNE with the best KL divergence, unlabelled classes. Every
color represents a di↵erent kind of botnet.

5 Conformal clustering

In this section we introduce Conformal Clustering, a clustering method
based on Conformal Prediction, and we then outline our experiments and
analyse results.

5.1 The algorithm

Conformal Prediction allows to have a confidence measure on predictions.
Given a bag of observations D = oz1, .., zn�1o, zi 2 Z, a new object z and a
significance level ", conformal prediction allows us to determine if z comes
from D with an error on the long run of at most ". Confidence is defined
as 1 � ". The only property required by conformal predictor is that the
distribution P from which oz1, .., zn�1o are generated is exchangeable. Note
that exchangeability property is weaker than iid, since:

iid

implies
====) exchangeable

30

We define a non-conformity measure A : Z(⇤)
⇥ Z ! R, to be a function

which accepts a bag of objects and an object zi, and returns a scalar rep-
resenting how much zi is conform to the other objects. A large number in
output indicates zi is non conform to the others. The result of Conformal
Prediction is a p-value pn and a boolean answer indicating if the new object
is conform to D. Follows a description of Conformal Prediction algorithm.

Data: Bag of objects D = oz1, .., zn�1o, non-conformity measure A,
significance level ", a new object z

Result: P-value pn, True if z is conform to training objects

Set provisionally zn = z and D = oz1, .., zno
for i 1 to n do

↵i A(D \ zi, zi)
end
⌧ = U(0, 1)

pn = #{i:↵i>↵n}|+#{i:↵i=↵n}⌧
n

if pn > " then
Output True

else
Output False

Algorithm 3: Conformal prediction using new examples alone

where ⌧ is sampled in Uni(0,1) to obtain a smoothed conformal predictor,
as suggested by Gammerman et al. in [4]. This makes our conformal pre-
dictor to be exactly valid, which means that the probability of error equals
".

In Conformal Clustering we use Conformal Prediction to create a bag
of predictions �", which contains the new objects which are conform to old
objects D. As in Conformal Prediction, we select a non-conformity measure
A and a significance level ", then we make predictions and we create clusters
of the predicted conform objects.

In order to do this, we first create a d-dimensional grid of ` points per
side equally spaced, where d is the number of features. Since we apply
Conformal Clustering after t-SNE embedding on the dataset, in our case
d = 2. The grid side range is chosen by looking at max and min of the d

features. We then compute a p-value for each of the grid points by using our
training objects. Finally, we make a prediction for every point respect to
the chosen significance level ". The True-predicted points are then clustered

31

by following the rule: “two points zi, zj are in the same cluster if they are
neighbours (i.e.: their distance on the grid is 1)”. We can notice that " is
a sort of trim for regulating the hierarchy of our clusters. However, respect
to other clustering algorithms such as k-Means and Hierarchical clustering,
Conformal Clustering can use a smooth functions to detect neighbours, and
in particular it can set a confidence level on the results. In the second
experiment of this section we will illustrate this by a graphical example.

Once we produced clusters on the ` ⇥ ` grid, we can use them to
make a cluster prediction for the objects zi we used to train them.
In fact, p-values grid points were clustered, but we do not know how
old objects zi must be clustered. In order to do this we can associate
to zi the clusters for which the distance between one point in them
and zi is less or equal to 1. This is done in our implementation by
code.conformal prediction.clustering.predict() function. This func-
tion, however, doesn’t merge clusters in case zi is associated to more than
one cluster, which should be implemented in the future.

5.2 Non-conformity measure

A non-conformity measure is defined as a function A : Z(⇤)
⇥Z! R, where

zi 2 Z 8i 2 {1, .., n}. Conformal prediction is proved to work for every non-
conformity measure, but some of them can be more e�cient. We analysed
two non-conformity measures: k Nearest Neighbours (k-NN) and Kernel
Density Estimation (KDE) with a Gaussian kernel. We here present how
these two measures are calculated. The experiments and results by using
them are afterwards analysed.

Ai, k-NN non-conformity measure, is calculated as follows. Ai for object
zi, given dij to be the j-th smallest distance between zi and the bag
oz1, .., zn o \zi, is:

Ai =
kX

j=1

dij , (5.1)

where k is the chosen number of neighbours.
Let Ai be a KDE non-conformity measure. Then for a given kernel

function K : Rd
⇥ Rd

! R, being d the number of features in a vector, is
calculated as:

Ai = �

0

@ 1

nh

d

nX

j=1

K

✓
zi � zj

h

◆1

A
. (5.2)

In this expression we can see the term h, which is the bandwidth of the

32

kernel. We will go through experiments by trimming this parameter. The
kernel K is a function centred around zi. In our experiments we used a
Gaussian kernel, which is defined as:

K(u) =
1

2⇡
e

� 1
2u

2
. (5.3)

5.3 Evaluation criteria

Conformal Clustering, being based on Conformal Prediction, needs two eval-
uation criteria: we would like to both look at how clusters reflect our classes
(validity) and how small is our prediction set (e�ciency).

For the evaluation of our system we replaced validity with an accuracy
measure. In particular, knowing the true label associated to every object,
we decided to use Purity, presented in Introduction to Information Retrieval
[13], as an accuracy criterion. This is formally defined as:

Purity(⌦, C) =
1

n

X

k

max
j

#{!k \ cj}, (5.4)

where ⌦ = {!1, ...,!K} is the set of clusters, and C = {c1, ..., cJ} is the set of
classes. Purity assigns to every cluster the most frequent class present in it,
and sums the count of how many objects of that label are in that cluster. The
resulted sum is then normalized by dividing it by the number of objects n.
Purity must be carefully used, since it does not take into account the number
of clusters. For this reason, having n objects, Purity= 1 may be easily
achieved by creating n clusters. In our case we decided to use it, because
we suggest Conformal Clustering is quite stable regarding the number of
clusters, as this can be trimmed by the parameter ". This problem should
however be further investigated by future studies.

As an e�ciency criterion, we considered Average P-Value, introduced
for the first time by Smith et al. in [14]. This criterion is defined to be the
average of the p-values in the grid. We want this parameter to be as small
as possible, because it is directly related to the size of our prediction set
�". This criterion is convenient to use in Conformal Clustering, because we
already have a p-values grid, and calculating its average is computationally
fast.

5.4 Experiments and analysis of the results

Conformal Clustering experiments were done for objects produced by a fixed
set of parameters of t-SNE, namely those who obtained the best Kullbak-
Leibler divergence in Section 4.3. The obtained objects {z1, ..., zn} were

33

k APV Purity
1 0.082001 1.000000
2 0.088266 0.985075
3 0.095214 0.940299
4 0.101682 0.932836
5 0.107819 0.925373
6 0.117725 0.888060
7 0.124504 0.888060
8 0.129991 0.895522
9 0.136139 0.910448
10 0.141672 0.910448

Table 4: k-NN non-conformity measure for Conformal Clustering, " = 0.2

used to compute a ` sided p-values grid, ` = 35. The p-values of the grid
were then predicted by setting “1” when pi > " “0” otherwise, and the “1”
points were clustered as explained before. Finally, the clusters generated by
the p-values grid, were used to associate a cluster to objects {z1, ..., zn}. A
cluster was associated to an object zi only if one of the objects it contained
had a distance of 1 or less to zi. Then Purity and APV were calculated.

The first experiment follows the procedure as above, by keeping fixed
the significance level " = 0.2 and using the two non-conformity measures we
described: k-NN and KDE (with Gaussian kernel). In the case of k-NN we
trimmed the parameter k, for KDE we instead considered the bandwidth h.
Table 4 and Table 5 show the results of this experiment.

From these results we can see that both non-conformity measures were
able to achieve best Purity. However, k-NN non-conformity measure did
quite better than KDE in terms of e�ciency, here measured by APV. Best
results of Purity and APV are in this case on the same row for both the
non-conformity measures. In order to obtain the same the reader may, from
the directory above code/ , launch:

python -m code.scripts.evaluate_clustering --dataset [preprocessed

dataset] --labels [labels]

where labels should be the labels file produced by create clusters(),
data/dataset/dataset-labels.txt . Please note that this script requires
much time to be executed.

For the second experiment we focused on ", to see how di↵erent signifi-
cance levels may infer with Purity. Note that since APV criterion doesn’t

34

h APV Purity
0.1 0.092544 1.000000
0.2 0.093504 0.992537
0.3 0.103475 0.955224
0.4 0.114118 0.925373
0.5 0.124189 0.888060
0.6 0.133151 0.888060
0.7 0.142152 0.902985
0.8 0.151735 0.947761
0.9 0.160588 0.947761
1.0 0.167546 0.910448

Table 5: KDE with Gaussian kernel non-conformity measure for Conformal
Clustering, " = 0.2

change by trimming ", because it is an "-independent criterion, we don’t
report its value here. In this experiment we use the kNN and KDE param-
eters who achieved best APV in the previous one. From them, respect to
di↵erent values of ", we construct the grid, create clusters and predict our
objects by using them. Follows a listing showing these steps. The reader
may obtain our same results by executing what follows from the directory
above code/ and within a Python interactive session:

import pylab as pl

import numpy as np

from scipy.spatial.distance import pdist, squareform

from code.scripts import load

from code.conformal_prediction import clustering as cls

from sklearn.manifold import TSNE

Settings

DATASET = ’data/dataset/dataset-preproc.csv’

Settings after the experiments

PERPLEXITY = 50

METRIC = ’euclidean’

LEARNINGR = 100

SEED = 2

L = 35

35

NCM = ’knn’

NCM_ARGS = {’k’: 1}

Load dataset

x = load.load_dataset(DATASET)

Conformal clustering

dist = squareform(pdist(x, METRIC))

t = TSNE(perplexity=PERPLEXITY, learning_rate=LEARNINGR,

random_state=SEED,

metric=’precomputed’)

z = t.fit_transform(dist)

grid = cls.pvalues_grid(z, L, NCM, **NCM_ARGS)

Round to nearest value in set [0.05, 0.1, 0.2, ...]

nearest = lambda x,s: s[np.argmin(np.abs(s-x))]

f = np.arange(0, 0.6, 0.1)

grid[:,2] = [nearest(x,f) for x in grid[:,2]]

Different transparency for each confidence interval.

colors = np.array([(0,0,1,a/max(f)*10) for a in grid[:,2]])

Plot data with different confidence levels

cm = pl.cm.get_cmap(’Reds’)

pl.scatter(grid[:,0], grid[:,1], c=grid[:,2], marker=’x’,

cmap=cm)

pl.colorbar()

pl.show()

This code will produce a plot as in Figure 7, where the prediction set for
our best scoring k-NN Conformal Clustering was coloured di↵erently with
the respect to ". This allows us to intuitively understand how objects within
our t-SNE space will be predicted and clustered for di↵erent significance
levels.

We can do the same for KDE non-conformity measure, by substi-
tuting in the previous listing of code NCM=’knn’ with NCM=’kde’ and
NCM_ARGS={’k’: 1} with NCM_ARGS={’kernel’:’gaussian’, ’h’: 0.1}.
This brings to Figure 8.

As expected from the previous results in APV, KDE shows many points
with low p-value all over the map. This makes the prediction set bigger than
k-NN one.

So far we have considered all the parts of our system (preprocessing, clus-
tering) as separate entities. This approach is good for understanding how
each parameter influences the results within its context. However, we need

36

Figure 7: Prediction set for various " for k-NN k=1

to know how di↵erent part integrate in the system, in order to achieve best
general performances. Next section investigates this aspect, and introduces
a test set to evaluate the experiments.

37

Figure 8: Prediction set for various " for KDE (gaussian) bandwidth=0.1

6 System Evaluation

Experiments conducted in Section 3, Section 4 and Section 5 had the goal of
evaluating only parts of the system, in order to understand how parameters
influenced them. However, since previous experiments did not lead us to a
general understanding of the system, it seemed necessary to have a global
evaluation taking into account how the parameters of the di↵erent parts
analysed so far influence the final results. Another aspect that was not
considered in the previous sections is validation on a test set. Using LOOCV
in this particular experiment was not feasible in our context, so we opted
for simply splitting our dataset into train and test set as explained later.

6.1 Evaluation Criteria

For evaluating the experiments in this section we decided to consider three
of the criteria we analysed in this report. In particular we chose to use
Purity, Average P-Value (APV) and Kullback-Leibler divergence. Purity,
as explained in Section 5, is here used as an accuracy criterion which ex-
presses how many di↵erently labelled objects one cluster contains. APV is

38

an e�ciency measure, which indicates how large is our prediction set, and
the smaller it is, the bigger the e�ciency is. Kullback-Leibler divergence is
here considered in order to have an idea of the t-SNE embedding. However,
this parameter cannot be used to evaluate the system, since as experiments
in Section 4.3 show, by incrementing perplexity, KL divergence keeps going
toward 0.

6.2 Description of the experiment

The experiments performed in this section will follow these steps:

1. A dataset is generated as in Section 3.

2. The dataset is preprocessed as in Section 4.1 and Section 4.2, to gen-
erate what we will here refer to as dataset-preproc.

3. dataset-preproc is projected into a 2-D map z by using t-SNE.

4. From z is created a train set with 75% of its objects and a test set
with the remaining elements.

5. train set is used to generate a p-values grid, clusters are created from
it as in Section 5, by using a certain significance level ".

6. test set is clustered respect to the clusters generated before as in Sec-
tion 5.

7. Purity is calculated over test set predicted clusters, and APV over the
p-values grid created in step 5.

We make notice that we must split between train and test set only after
using t-SNE, and not directly on the dataset. This because we need both
the train and test objects to be described by the same map. Clusters are
extracted from p-values grid after applying a significance level " = 0.2.

Previous experiments on t-SNE suggested that by increasing perplexity
we get better and better values for KL divergence. In our experiment we
analyse the two non-conformity measures k-NN and KDE, by using the
parameters which gave best results in the previous section, and then trim
perplexity to see how it influences the performances.

39

6.3 Results and Analysis

We first analyse k-NN based Conformal Clustering. Perplexity is considered
for values between 5 and 109. Figure 9 shows that, as hypothesised in
Section 4, KL divergence keeps decreasing toward 0 as perplexity grows.
However, from Figure 10 we can see that APV and Purity are not influenced
so much by this parameter on the long run. In fact, Purity rapidly increases
around perplexity= 20, but it then stays on average on 1.0, with some down-
peaks. Similarly, Average P-Value has many peaks, and in the long run looks
to raise, but it doesn’t seem to be completely correlated to it. Since Purity
looks to be stable respect to perplexity, we choose to look at the best APV.
A minimum for APV is in our experiment at 0.0618, when perplexity= 48
and Purity= 0.9706. These fluctuations in both APV and Purity, which
are not present in KDE case, as we will show later, suggest that we should
run the experiments for many PRNG seed values, for both t-SNE and train
and test set separation, and then average the results. Because of limited
time we could not do these experiments, and they may be a good start
point for future research. Figure 12 shows t-SNE using perplexity= 48,
which obtained best for k-NN Conformal Clustering. From this figure we
can observe that our four classes are easily separable. However, we also
notice that 4 clusters are not enough. Conformal Clustering, in our case,
produced around 20 clusters for this experiment. Future research should
understand if this is acceptable for this clustering method, or if instead a
di↵erent accuracy or validity criterion should be chosen to evaluate it. In
fact, as we mentioned before, Purity does not take into account the number
of clusters produced.

Quite di↵erent results were noticed for KDE Conformal Clustering.
Here, APV assumes a clear trend which quickly goes down until around
30, and then gradually starts going up after 60. Its behaviour, described
in Figure 11, in closer to what we actually expected: after a certain value
of perplexity, the size of the prediction sets start raising. This phenomenon
can be also seen in kNN case, as in Figure 10, but it is not clearly visible,
and further experiments with di↵erent seeds values should understand this.
In terms of Purity, k-NN and KDE behaves similarly. We suggest the peaks
may be due to random sampling, but this should be further investigated.
The best APV obtained by experiment with k-NN was at perplexity= 52,
where APV= 0.0861 and Purity= 1.0000.

In order to run the two experiments, run, from the directory above
code/:

python -m code.scripts.evaluate_system --dataset [preprocessed

40

Figure 9: Kullback-Leibler divergence in k-NN Conformal Clustering for
many values of perplexity

dataset] --labels [labels] --ncm knn --k 1 ,
to evaluate the system for k-NN non-conformity measure. Here, k is the
number of neighbours.

python -m code.scripts.evaluate_system --dataset [preprocessed

dataset] --labels [labels] --ncm kde --kernel gaussian --bandwidth

0.1

where kernel is the KDE kernel, and bandwidth is the kernel bandwidth.
These two scripts will return an output in 5 rows, indicating: perplexity,
significance level, KL divergence, APV, Purity.

The experiments indicate that k-NN non-conformity measure performs
better for our Conformal Clustering respect to KDE in terms of prediction
set size (APV). This result is quite unexpected, because KDE would suggest
a function able to smooth the prediction set tight as we want. However, we
were able to obtain perfect scores in terms of Purity on the test set. This
fact shows that our system works well, but also that maybe an accuracy
criterion considering also the number of clusters should be experimented.

41

Figure 10: Average P-Value and Purity in k-NN Conformal Clustering for
many values of perplexity

42

Figure 11: Average P-Value and Purity in KDE Conformal Clustering for
many values of perplexity

43

Figure 12: Best t-SNE for our system with labelled classes.

44

7 Code structure

This Section presents the e↵ort spent in creating a consistent code structure.
The code was mainly written in Python. The choice of other languages for
specific tasks is explained throughout this section. The developed software
is a prototype, with the goal of helping research and easily produce inter-
pretable results and evaluations. The code is hierarchically divided into
packages, which are presented below. A Python module is a file contain-
ing Python definitions and statements. Modules can be logically grouped
into packages, which are the collection of modules contained in a directory8.
In general, a module xxx in directory code/aaa/ will be referred to as
code.aaa.xxx. Figure 13 shows the hierarchy of our code. Follows an ex-
planation the packages in our code. Note that in our structure code is itself
a package, which contains the packages: scripts, features, preprocessing,
conformal prediction, evaluate.

7.1 Package code.scripts

A logical separation can be made between code.scripts and all the other
modules from code. This module contains all the code of the experiments.
If a user wants to create a new experiment, he can create a python file in
code/scripts/ folder and insert the code. In order to import the modules
within code he must (antepone) a “..” to the module name. For example, if
the user wants to use the module code.conformal prediction.clustering
from a script in code.scripts, he will insert:

from ..conformal_prediction import clustering

and then refer to the module’s functions as clustering.foo(). In order to
execute a script from this directory the user should, as we did previously,
run:

python -m code.script.[module without .py extension]

from the directory above code/ .
In this report we located all the dataset creation and performance eval-

uation scripts in code/scripts . Module code.scripts also contains the
module load, which exposes the functions required to load a network trace
file and store/load a dataset, labels, and class ids in files.

8
A directory, in order to be considered a package, must also contain, even if empty, the

file init .py , to initialize the package.

45

code/

|-- __init__.py

|-- conformal_prediction

| |-- README

| |-- __init__.py

| |-- clustering.py

| ‘-- predictor.py

|-- evaluate

| |-- README

| |-- __init__.py

| ‘-- evaluate.py

|-- features

| |-- README

| |-- __init__.py

| ‘-- select_features.py

|-- preprocessing

| |-- README

| |-- __init__.py

| ‘-- preprocessing.py

‘-- scripts

README

__init__.py

best_tsne.py

create_dataset.py

dataset_blacklist.txt

evaluate_clustering.py

evaluate_features.py

evaluate_system.py

evaluate_tsne.py

load.py

load.pyc

preprocess_dataset.py

test-pacf-artificial.R

Figure 13: Hierarchy of code/ directory

46

7.2 Package code.features

The package code.features only contains module select features. This
module has all the functions needed to extract features from a vector of data.
In our context this module was used by code.scripts.create dataset to
elaborate the informations in a network trace file, and to output features
for creating the dataset. Appendix will show a peculiarity of the function
get frequency() from this package.

7.3 Package code.preprocessing

This package contains the module needed to preprocess our dataset when
created. The module code.preprocessing.preprocessing contains the
functions to normalize a vector in [0,1] and to take the log of every element
in a vector. This module is used by code.scripts.preprocess dataset to
preprocess the dataset before other analysis.

7.4 Package code.conformal prediction

In this package functions are logically divided into two modules: predictor
and clustering.

Module predictor contains functions which are used for potentially ev-
ery application of Conformal Prediction. It comprises functions such as the
calculation of p-value by using a defined or a custom non-conformity mea-
sure, and the prediction of a new example with the respect to a significance
level. For how the module is designed it will be easy to extend the module
with new non-conformity measures.

The second module, clustering contains functions specific to Conformal
Clustering, as explained in Section 5. These functions allow to create p-
values grids, creating clusters, and predicting clusters for zi objects.

7.5 Package code.evaluation

This package contains all the functions needed to evaluate our system. Since
the evaluation functions were only a few, they where all collected in one
module evaluate. However it is possible to create a division between these
functions in case it will be needed, by separating them in modules un-
der code.evaluate. Functions in code.evaluation comprise calculation
of SIMM-DIFF coe�cients, as in Section 3, calculation Kullback-Leibler di-
vergence when computing TSNE, and calculation of Average P-Value (APV)
and clusters Purity as described in Section 5.

47

8 Future directions, Conclusions

We presented a system for detecting botnet infected computers (bots) within
a network, by using high level tra�c features. Our goal was to cluster to-
gether botnet threats of the same type, with the claim that by doing this we
will be able to detect previously known botnets in a real world setting. Re-
spect to previous research [16, 5, 7] we introduced a larger set of meaningful
features, a novel algorithm for periodicity detection in botnets communi-
cation by using PACF, and conducted many experiments by using t-SNE
and Conformal Clustering to generate clusters. We experimented with both
KDE and k-NN non-conformity measures, and quite surprisingly found out
that k-NN performed better. Since however the results of the two measures
are quite similar, we suggest this may be due to approximation errors, and
more specific studies are required on this. The method we proposed to eval-
uate the contribution of features, SIM-DIFF, helped us to decide between
possible preprocessing choices and to spot errors in creating the dataset. We
also suggested Purity as an accuracy criterion for clusters, and we were able
to obtain perfect accuracy in our experiments, while keeping a good value
of e�ciency. E�ciency criterion APV was used as in Smith et al. [14].

Further studies may focus on a di↵erent criterion for evaluating cluster-
ing accuracy or validity. In fact, as explained in this report, Purity does
not take into account the number of clusters generated, and this may be a
problem when evaluating performances. Future studies should then either
propose a di↵erent accuracy criterion, or show that Purity is valid for evalu-
ating Conformal Clustering. A second important aspect would be to perform
the experiments by considering every specific kind of botnet as a class itself.
Here in fact we grouped botnets in four major classes, but we afterwards
noticed that there may be some evident distinctions within themselves (see
Figure 12). One set of features which may be really important for our scope
is “most frequent destination port”, or “k most frequent destination ports”.
This information can be useful because some botnets make use of a precise
set of port numbers [1], but we did not use it. We also did not use features
{14, 15, ..., 18} of Table 1, and further studies may try to understand if they
are useful for our problem.

Finally, further experiments should be done on the system, as suggested
by Section 6, to remove the high variability in results, and to have a better
idea about how perplexity relates to APV and Purity in k-NN based Con-
formal Clustering. Noise reduction methods may also be experimented on
network traces before creating the dataset.

48

References

[1] Paul Bacher, Thorsten Holz, Markus Kotter, and Georg Wicherski.
Know your enemy: Tracking botnets, 2005.

[2] Michael Bailey, Evan Cooke, Farnam Jahanian, Yunjing Xu, and Man-
ish Karir. A survey of botnet technology and defenses. In Conference
For Homeland Security, 2009. CATCH’09. Cybersecurity Applications
& Technology, pages 299–304. IEEE, 2009.

[3] James Cook, Ilya Sutskever, Andriy Mnih, and Geo↵rey E Hinton.
Visualizing similarity data with a mixture of maps. In International
Conference on Artificial Intelligence and Statistics, pages 67–74, 2007.

[4] Alexander Gammerman and Vladimir Vovk. Hedging predictions in
machine learning the second computer journal lecture. The Computer
Journal, 50(2):151–163, 2007.

[5] Jan Goebel and Thorsten Holz. Rishi: Identify bot contaminated hosts
by irc nickname evaluation. In Proceedings of the first conference on
First Workshop on Hot Topics in Understanding Botnets, pages 8–8.
Cambridge, MA, 2007.

[6] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Bot-
miner: Clustering analysis of network tra�c for protocol-and structure-
independent botnet detection. In USENIX Security Symposium, pages
139–154, 2008.

[7] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and
Wenke Lee. Bothunter: Detecting malware infection through ids-driven
dialog correlation. In USENIX Security, volume 7, pages 1–16, 2007.

[8] Geo↵rey E Hinton and Sam T Roweis. Stochastic neighbor embedding.
In Advances in neural information processing systems, pages 833–840,
2002.

[9] RC Joshi and Anjali Sardana. Honeypots: A New Paradigm to Infor-
mation Security. Science Publishers, 2011.

[10] Rikard Laxhammar and Göran Falkman. Sequential conformal anomaly
detection in trajectories based on hausdor↵ distance. In Information
Fusion (FUSION), 2011 Proceedings of the 14th International Confer-
ence on, pages 1–8. IEEE, 2011.

51

[11] Jing Lei, Alessandro Rinaldo, and Larry Wasserman. A conformal pre-
diction approach to explore functional data. Annals of Mathematics
and Artificial Intelligence, pages 1–15, 2013.

[12] Jing Lei and Larry Wasserman. Distribution-free prediction bands for
non-parametric regression. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 76(1):71–96, 2014.

[13] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[14] James Smith, Ilia Nouretdinov, Rachel Craddock, Charles O↵er, and
Alexander Gammerman. Anomaly detection of trajectories with kernel
density estimation by conformal prediction. Accepted for COPA’2014.

[15] Robin Sommer and Vern Paxson. Outside the closed world: On us-
ing machine learning for network intrusion detection. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 305–316. IEEE, 2010.

[16] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher
Kruegel. Botfinder: Finding bots in network tra�c without deep
packet inspection. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages 349–360.
ACM, 2012.

[17] Toni. Calculating the size of the downadup outbreak. http://www.

f-secure.com/weblog/archives/00001584.html.

[18] Laurens van der Maaten. t-distributed stochastic neighbor embedding.
http://homepage.tudelft.nl/19j49/t-SNE.html.

[19] Laurens Van der Maaten and Geo↵rey Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[20] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic
learning in a random world. Springer, 2005.

52

A Installing and using the code

The code we produced is all in directory code/ , which constitutes the code
Python package. code depends on the following Python packages: Numpy,
Scipy, Scikit-learn, IPy, patsy, rpy2, Matplotlib. The code was tested on
OSX 10.9.4 and Linux openSUSE 13.1 using CPython version 2.7. Follow
the instructions to install each of the requirements if needed. To check if
some of them is already installed, from a command line:

$ python

>>> import numpy

>>> import scipy

>>> import sklearn

>>> import IPy

>>> import patsy

>>> import rpy2

>>> import pylab

>>>

Each line will raise an exception only if the package is not installed. After
all the requirements are installed, the reader can follow the examples, as
introduced in Section 1.4.

NOTE: Scikit-learn was modified by the author of this report for the
purpose of the project. A pull request1 has been sent by the author, but it
has not been merged to the master yet. For this reason it must be installed
from a branch on the author’s fork as below.

pip

It is a useful tool to easily install Python packages without the need of vis-
iting package website or manually cloning remote repositories. It can be in-
stalled by following the instructions at http://pip.readthedocs.org/en/
latest/installing.html#install-pip. Following installation instruc-
tions will also propose the pip command. The flag --user we will use
in the following pip directives indicate the installation to happen locally for
a single user.

1https://github.com/scikit-learn/scikit-learn/pull/3422

53

numpy, scipy

Can be installed by downloading binaries from http://www.scipy.org/

scipylib/download.html. Otherwise, by using pip, from a command line:
pip install --user numpy

and
pip install --user scipy

sklearn

Scikit-learn must be installed as follows. From a command line, type:

cd some/tmp/directory/

git clone https://github.com/joker0x5F5F/scikit-learn

cd scikit-learn

git checkout tsne-kldivergence

python setup.py install --user --record files.txt

IPy

Can be installed by following instructions on the website https://pypi.

python.org/pypi/IPy/, or by typing from a command line:
pip install --user IPy

patsy

As before, it can be installed by following instructions on the website https:
//pypi.python.org/pypi/patsy/, or by typing from a command line:

pip install --user patsy

rpy2

Its website (http://rpy.sourceforge.net/) suggests to directly use pip:
pip install --user rpy2

As alternative, https://pypi.python.org/pypi/rpy2 can be used.

matplotlib

Matplotlib can be installed either by its download page http://matplotlib.
org/downloads.html or as before by using pip:

pip install --user matplotlib

54

B Calling R from Python

The function code.featutes.select features.get frequency() was pre-
sented extensively in Section 3, when talking about periodicity detection.
Its code although presents a peculiarity, which is worth to mention. The
algorithm we suggested requires to compute the Partial Autocorrelation
Function (PACF). However, while for other functionalities we relied on ex-
ternal Python packages (e.g. sklearn.manifold.TSNE) or created our
implementation where needed (e.g. code.conformal prediction), in this
case we decided not to use the most known Python implementation of it:
pacf ols() from statsmodels.tsa.stattools. This choice is due to the fact
that the code of this implementation is poor, very slow, and gives unreliable
results. Due to timing constraints we decided to rely on some code we knew
to work well: the R’s function pacf(). This function source code is clean
and well written, and it uses C compiled code when performing the most
computationally expensive tasks. This was also an opportunity to learn how
to call R code from Python.

For interfacing R from Python we opted for rpy22. This package pro-
vides an easy to use interface to R’s functions. Using some R code from
within a Python environment is in fact as simple as:

>>> from rpy2.robjects import r as R

>>> # run R’s seq()

>>> s = R.seq(1, 10, 1)

>>> # convert it to a python list

>>> s = list(s)

>>> print s

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

where we execute R’s seq() function, convert the result to Python list
and print its result. The reason we need to convert the result to a list
object is that rpy2 returns as output objects of custom types. This is not
a big issue, as it’s easy to cast objects from/to the functions of this module.
For example if, as in our specific case, we want our R code to accept a
numpy.array and compute on it pacf(), we need to do something like:

from rpy2.robjects import r as R, FloatVector

y = range(10)

2
http://rpy.sourceforge.net/

55

pacf = R.pacf(FloatVector(y), plot=False)[0]

pacf = list(pacf)

print pacf

Output:

[0.7000000000000001, -0.15270350564468238,

-0.15490666705224027,

-0.154749118543953, -0.1491847053787029,

-0.13323879180867937,

-0.09926169022868174, -0.036962247141936716,

0.06477815793402909]

In this interactive session we create a vector y of numbers from 0
to 9, cast it to be of type rpy2.robjects.FloatVector and pass
it to pacf() function. The object returned by this function is a
rpy2.robjects.vectors.ListVector, from which we consider the first entry:
the PACF coe�cients. These are of type rpy2.robjects.vectors.Array,
which we may want to convert to list as shown.

In general rpy2 is a great interface to R language. It has many other in-
teresting functionalities, such as importing external library as in R environ-
ment, but they are not presented in this document. For what concerns this
project, the choice of replacing pacf ols() from statsmodels.tsa.stattools
with pacf() from R considerably improved the timing performances. In fact
this task improved from taking several minutes for computing PACF to just
a few seconds. We believe this solution also to be elegant, since it was done
in pure Python. However, in the future it should be created a stable Python
library to compute ACF and PACF.

C Code listings

All the working code produced and presented should be provided together
with this document. Otherwise, the code can be found on bitbucket private
repository https://bitbucket.org/joker__/bdcc. To get access to this
repository, please send an email to:

g.chers :at: gmail.com.

56

